If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-1040=0
a = 2; b = 4; c = -1040;
Δ = b2-4ac
Δ = 42-4·2·(-1040)
Δ = 8336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8336}=\sqrt{16*521}=\sqrt{16}*\sqrt{521}=4\sqrt{521}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{521}}{2*2}=\frac{-4-4\sqrt{521}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{521}}{2*2}=\frac{-4+4\sqrt{521}}{4} $
| 11b+1=2b/3+18 | | -32=-14/5n | | 5x+2/7=4x-9 | | 64x^2+48x+96=0 | | S=36w^2 | | 5z-7z=9z-4+6z | | x^2-8x-2x=0 | | 8x/5+1=-14 | | x+(x-53415)=302475 | | -1/8h=9 | | 1-1(4x-5+6x)=45 | | 6-8x/5=3x-7/2 | | t2-2t=-1 | | 13b+-76=28 | | X(2x+3)=176 | | 5(a-2)=3a+4 | | 3^x+7=27 | | -3÷4k=15 | | 7x/2+8=36 | | x=0.06x+112800 | | -35=5(w+3)-7w | | 3(2x-7)+5x+8=x | | x/3-8=2+2 | | 8=u−8 | | 35=5(w+3)-7w | | 4x/3-10=10 | | X/2+9/10=x/5 | | (5x+7)=(7x+9) | | 2|x-1|=18 | | 1b+7/4=8 | | 16+36t=3×2t−2 | | 16+144t/4t=3×2t−2 |